ASD 2

Algorithmique et Structure de Données

Marc Gaëtano

gaetano@polytech.unice.fr

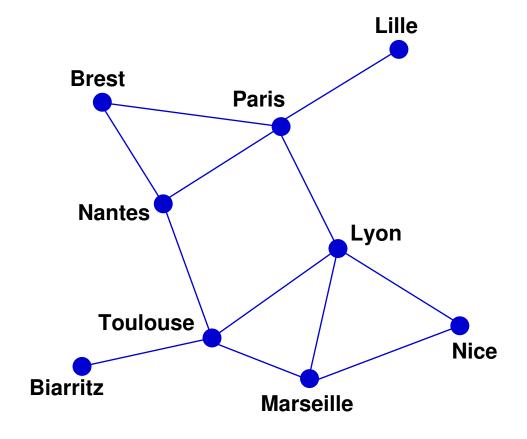
Polytech'Nice-Sophia

Département Sciences Informatiques
930 route des Colles
06903 Sophia Antipolis - France

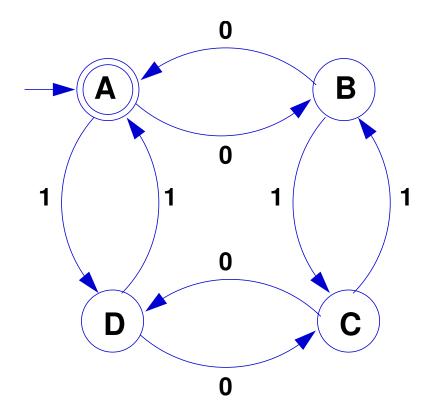
Introduction aux Graphes

- Définitions, propriétés et représentations
- Parcours en profondeur et en largeur
- Tri topologique
- Connexité
- Arbres couvrants

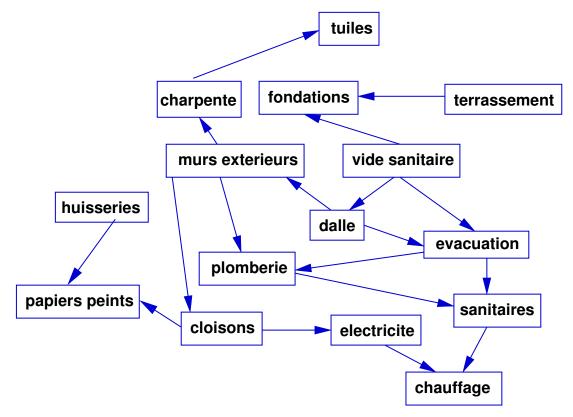
Réseaux



Processus



Ordonnancement

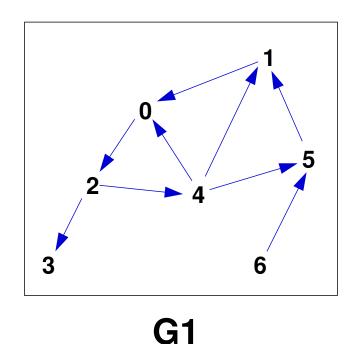


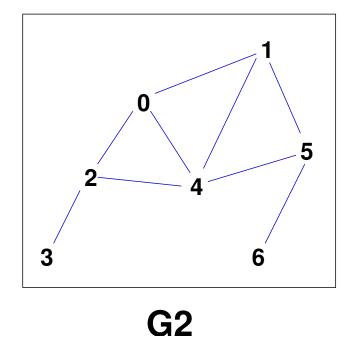
- S est un ensemble fini (les sommets)
- ullet $A \subset S \times S$ est une relation binaire sur S

Terminologie

- si A est symétrique, G est non orienté et $a=(u,v)\in A$ est une arête, sinon G est orienté et a est un arc
- |S| est l'*ordre* de G

Graphe orienté et non orienté





Adjacence

Soit $(u, v) \in A$ un arc ou une arête

- \bullet (u,v) part de u et arrive à v
- ullet v est adjacent à u
- \bullet (u,v) est incident à u et à v

Si G est non orienté, alors $(u,v) \in A \Longrightarrow u \neq v$, sinon $(u,u) \in A \Longrightarrow (u,u)$ est une boucle

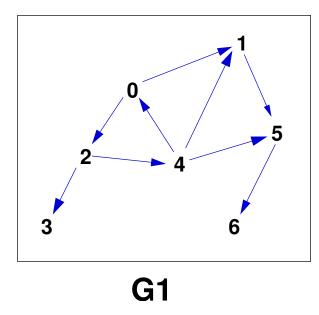
Degré

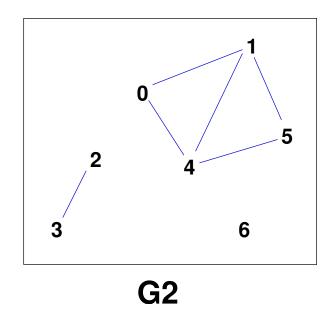
Soit $u \in S$ un sommet de G et d(u), le *degré* de u

- \bullet d(u) est le nombre d'arcs ou d'arêtes incidents à u
- si G est orienté :

 - $d(u) = d_e(u) + d_s(u)$

Degrés des sommets



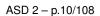


- dans **G1**: $d_e(4) = 1$, $d_s(4) = 3$ et d(4) = 4
- dans **G2**: d(4) = 3 et d(6) = 0

Chemin

Une suite de sommets $\langle u_0,u_1,..,u_k\rangle$ tels que $(u_i,u_{i+1})\in A, \forall i\in [0..k[$ est un *chemin* de u_0 à u_k de longueur k

- si tous les sommets du chemin sont distincts, le chemin est élémentaire
- si \exists un chemin de u à v dans G, on dit que v est accessible par u dans G, soit $u \rightarrow_G v$



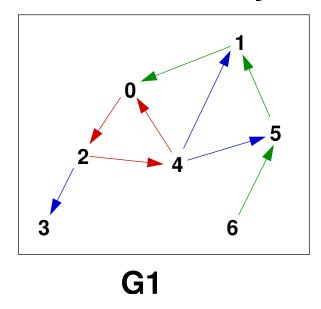
Cycle et circuit

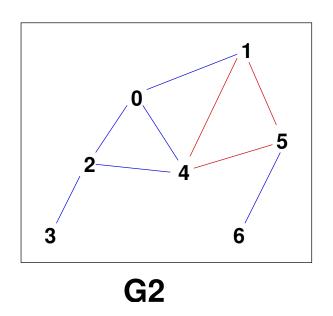
Un chemin $\langle u_0, u_1, ..., u_k \rangle$ est un :

- *circuit* dans une graphe G orienté, si $u_0 = u_k$ et si le chemin contient au moins un arc (une boucle)
- *cycle* dans une graphe G non orienté, si $u_0 = u_k$ et si le chemin contient au moins trois arêtes

Un graphe sans cycle (circuit) est acyclique

Chemin, circuit et cycle





- dans **G1** : $\langle 0, 2, 4, 0 \rangle$ et $\langle 1, 0, 2, 4, 5, 1 \rangle$ sont des circuits
- dans **G2** : $\langle 0, 2, 4, 0 \rangle$ et $\langle 1, 4, 5, 1 \rangle$ sont des cycles

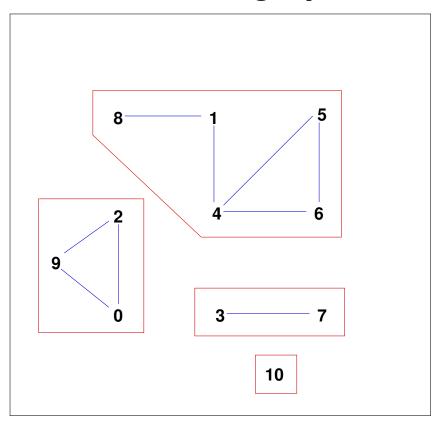
Connexité

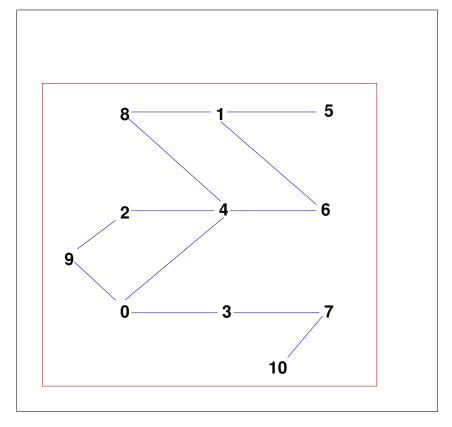
La relation \leftrightarrow_G définie sur S l'ensemble des sommets d'un graphe G par $u \leftrightarrow_G v \iff u \to_G v$ et $v \to_G u$ est une relation d'équivalence, et

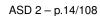
- les classes d'équivalence de \leftrightarrow_G dans S sont les composantes (fortement) connexes de G
- G est (fortement) connexe si et seulement si \leftrightarrow_G n'a qu'une seule classe d'équivalence dans S

L'adverbe "fortement" s'emploie quand G est orienté

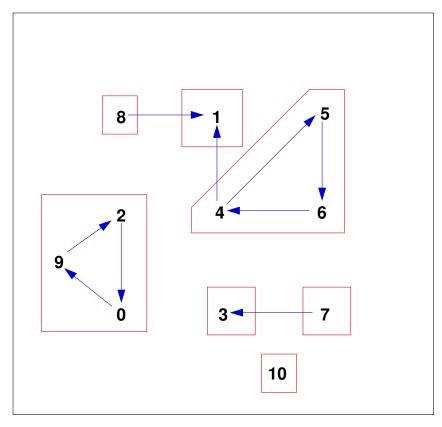
Connexité des graphes non orientés

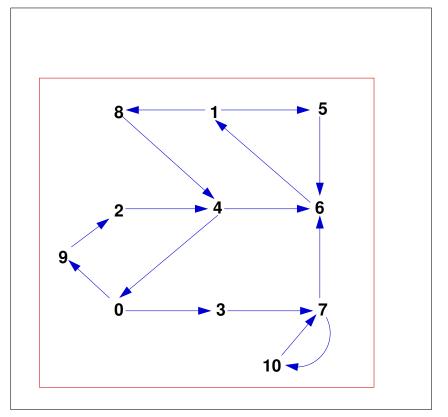


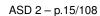




Connexité des graphes orientés







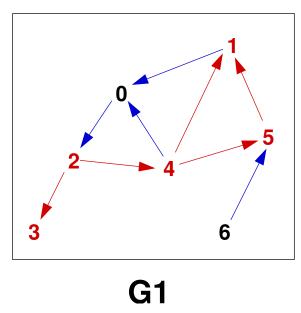
Sous-graphe

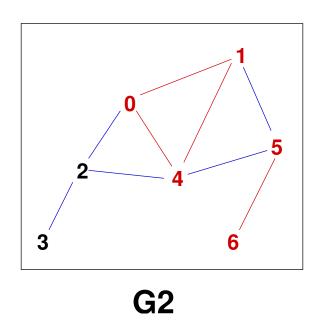
G' = (S', A') est un sous-graphe du graphe G = (S, A) si et seulement si $S' \subseteq S$ et $A' \subseteq A$. Si S' = S, on dit que G' est *couvrant*

Soit G=(S,A) un graphe et $S'\subseteq S$. Le sous-graphe G'=(S',A') de G avec $A'=\{(u,v)\in A\mid u,v\in S'\}$ est appelé le sous-graphe de G engendré par S'

De même, si $A' \subseteq A$, le sous-graphe G' = (S', A') de G avec $S' = \{u \in S \mid \exists v \in S, (u, v) \text{ ou } (v, u) \in A'\}$ est appelé le sous-graphe de G engendré par A'

Sous-graphes





En rouge, le sous-graphe de **G1** engendré par les sommets $\{1,2,3,4,5\}$ et le sous-graphe de **G2** engendré par les arêtes $\{(0,1),(0,4),(1,4),(5,6)\}$

Isomorphisme

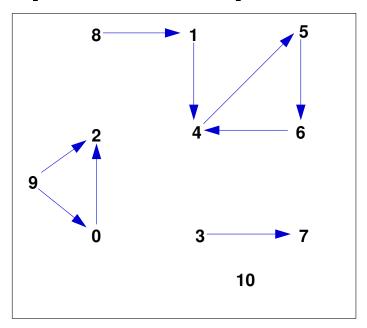
Deux graphes de même nature G = (S, A) et G' = (S', A') sont *isomorphes* si et seulement si $\exists b$ bijective, $b: S \longrightarrow S'$ telle que

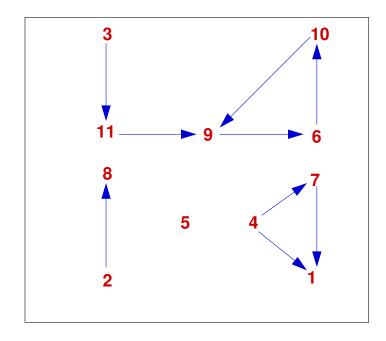
$$\forall u, v \in S, \ (u, v) \in A \iff (b(u), b(v)) \in A'$$

Autrement dit, G est isomorphe à G' si je peux *renommer* les sommets de G par les sommets de G'

 \Longrightarrow les sommets d'un graphe G d'ordre n sont toujours notés 0,1,..,n-1

Graphes isomorphes





La bijection b: b(0)=7, b(1)=11, b(2)=1, b(3)=2, b(4)=9, b(5)=6, b(6)=10, b(7)=8, b(8)=3, b(9)=4 et b(10)=5

Arbre

Un graphe non orienté connexe et acyclique est un arbre

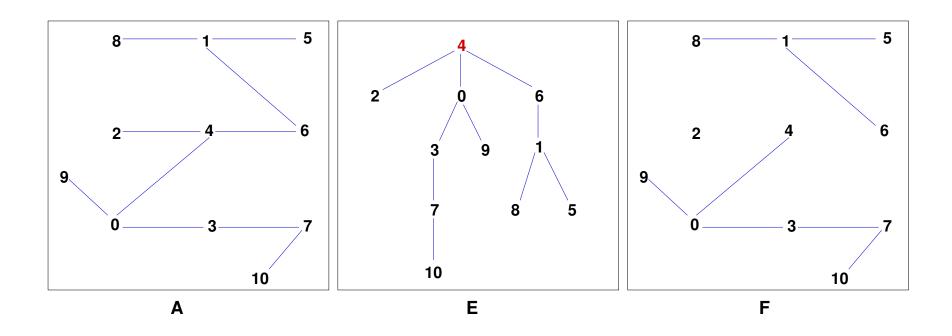
Arbre enraciné

Etant donné un arbre, le choix d'un sommet particulier appelé *racine* enracine l'arbre, et détermine récursivement les sous-arbres enracinés

Forêt

Un graphe non orienté acyclique est une *forêt* (un ensemble d'arbres)

Arbres et forêt



A est un arbre, E l'arbre A enraciné avec 4 comme racine et F une forêt à 3 arbres

Soit G = (S, A) un graphe d'ordre n

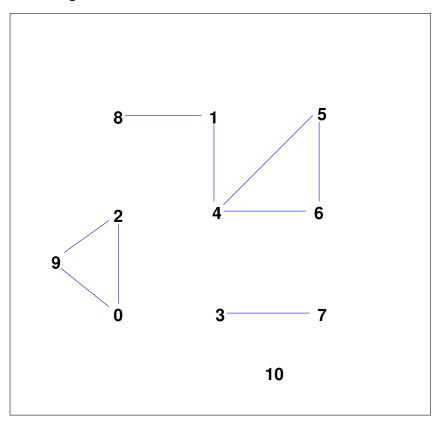
Matrice d'adjacence

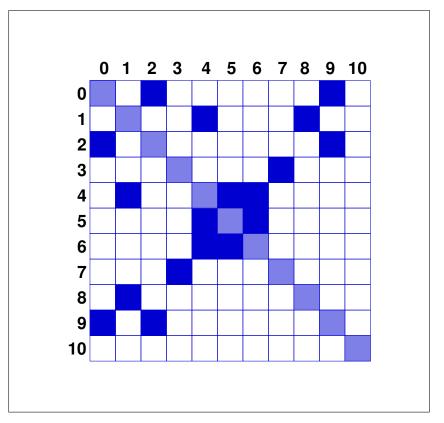
 $S = \{0, 1, ..., n-1\}$ et A est une matrice $n \times n$ de booléens telle que $\forall u, v \in S, (u, v) \in A \iff A[i][j] = \text{vrai}$

Listes d'adjacence

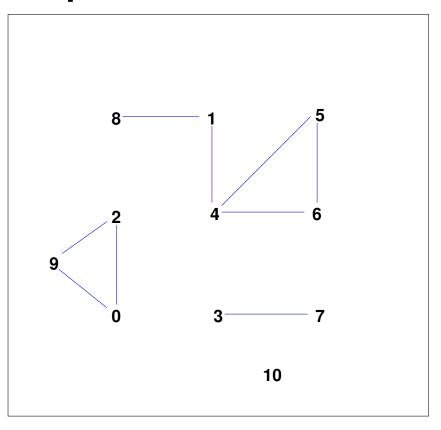
 $S=\{0,1,..,n-1\}$ et Adj est une fonction de S vers $\langle S \rangle$ (les listes finies d'éléments de S) telle que pour tout $u \in S$, $\mathrm{Adj}(u) = \langle v_0, v_1, .., v_{k-1} \rangle$ la liste des k sommets adjacents à u

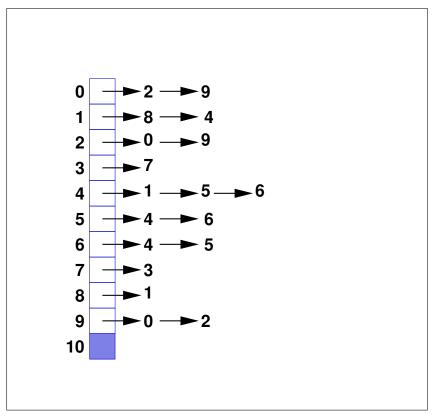
Graphe non orienté et matrice d'adjacence

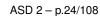




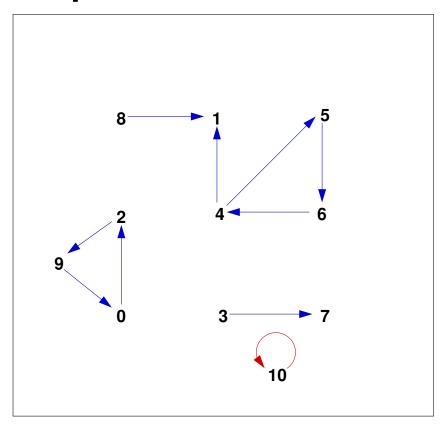
Graphe non orienté et liste d'adjacence

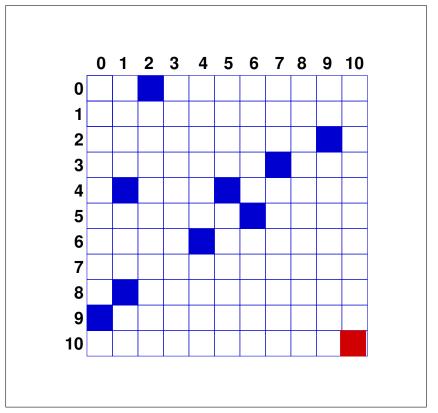




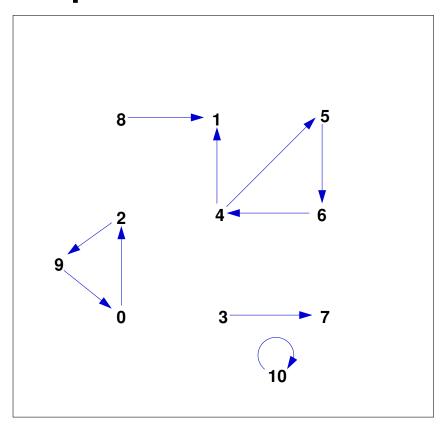


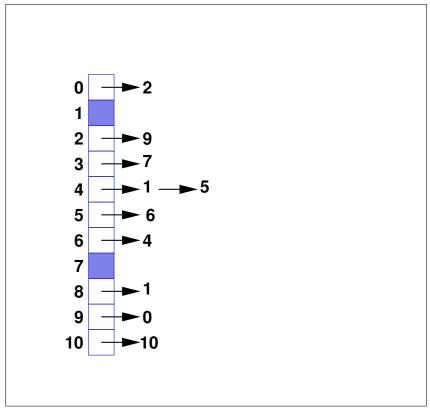
Graphe orienté et matrice d'adjacence

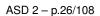




Graphe orienté et liste d'adjacence







Graphe: parcours

Parcours en profondeur (PP)

- exploration des sommets "en profondeur" d'abord
- explore tout le graphe
- base de nombreux algorithmes sur les graphes

Parcours en largeur (PL)

- exploration des sommets "en largeur" d'abord
- n'explore qu'une partie du graphe
- moins puissant que le PP

PP: présentation

Deux parties distinctes

Le parcours des sommets

- on cherche les sommets non explorés
- parcours linéaire itératif de la liste des sommets

L'exploration du graphe

- on cherche les sommets non explorés accessibles à partir d'un sommet donné
- parcours récursif vers les sommets adjacents

PP: attributs

Attributs

- le **père** : p[u], le sommet à partir duquel le sommet u à été découvert
- la **couleur** : c[u], un attribut dynamique indiquant l'état du sommet u durant le parcours
- le temps : le temps global (un entier) qui s'incrémente à chaque étape
- les dates : d[u] et f[u], les dates de début et de fin de découverte (ou traitement) du sommet u

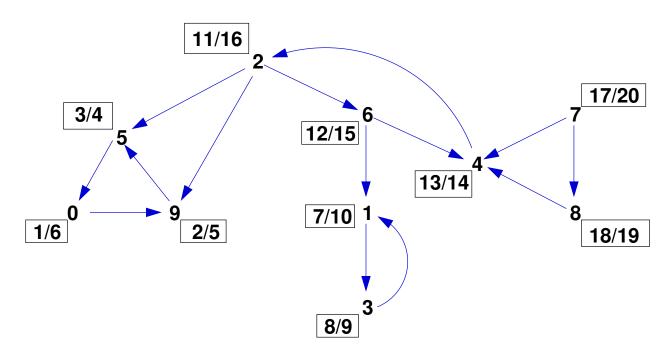
PP: relations

Relations entre les attributs

- \bullet $\forall u \in S, \ 1 \leq d[u] < f[u] \leq 2|S|$
- la couleur c[u] du sommet u est
 - blanc durant l'intervalle de temps [0, d[u]]
 - gris durant l'intervalle de temps [d[u], f[u]]
 - noir durant l'intervalle de temps $[f[u], \infty[$
- au début du parcours, tous les sommets sont blancs
- à la fin du parcours, tous les sommets sont noirs

PP: exemple

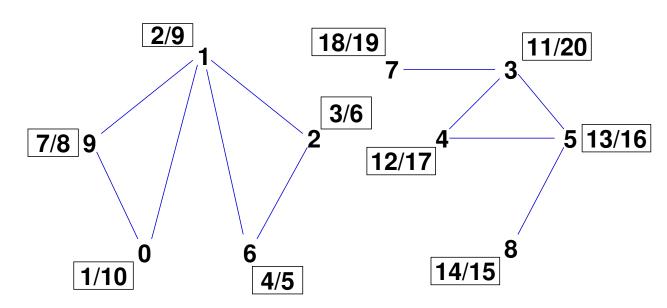
PP d'un graphe orienté, date de début et de fin



Les sommets sont choisis par ordre croissant

PP: exemple

PP d'un graphe non orienté, date de début et de fin



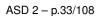
Les sommets sont choisis par ordre croissant

PP: graphe de liaison

Soit G=(S,A) un graphe (orienté ou non) et π un PP particulier de G

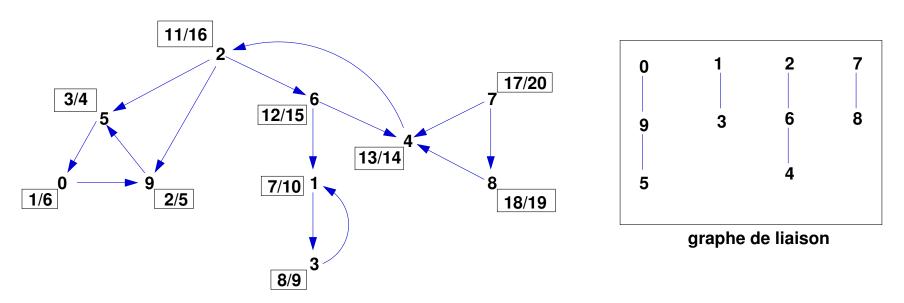
Graphe de liaison

- $G_{\pi} = (S, A_{\pi})$ où $A_{\pi} = \{(p[u], u) \mid u \in S, p[u] \neq -1\}$
- G_{π} est une forêt dont chaque arbre possède un *unique* sommet r tel que p[r] = -1 (la racine de l'arbre)
- si v est dans un sous-arbre de G_{π} de racine u, v est un descendant de u et u est un ancêtre de v dans G_{π}



PP: exemple

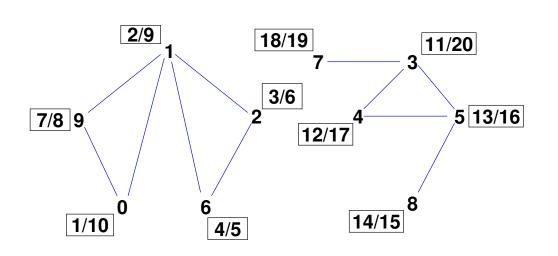
PP d'un graphe orienté et graphe de liaison

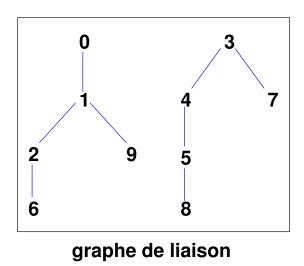


Les sommets sont choisis par ordre croissant

PP: exemple

PP d'un graphe non orienté et graphe de liaison





Les sommets sont choisis par ordre croissant

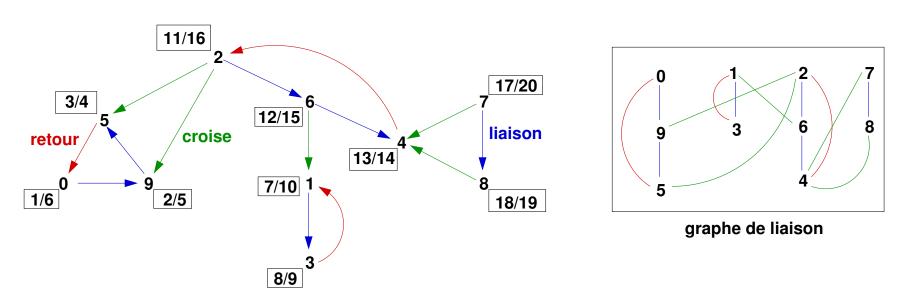
PP: classification

Classification des arcs (cas orienté)

- lacktriangle arcs de liaison : les arcs de G_{π}
- arcs retour : les arcs $(u,v) \in A$ où u est un descendant de v dans G_{π}
- arcs croisés : les arcs $(u,v) \in A$ où u et $v \in \grave{a}$ deux arbres distincts de G_{π}
- arcs couvrants : tous les autres arcs

PP: exemple

PP d'un graphe orienté et classification des arcs



Les sommets sont choisis par ordre croissant

PP: classification

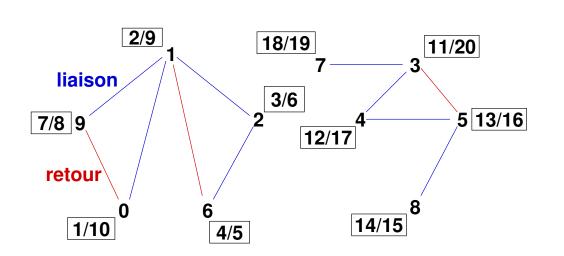
Classification des arêtes (cas non orienté)

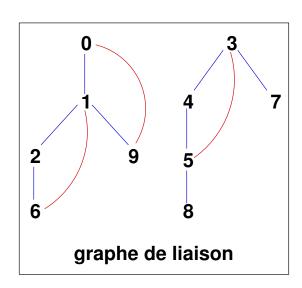
- lacktriangle arêtes de liaison : les arêtes de G_{π}
- arêtes retour : les arêtes $(u,v) \in A$ où u est un descendant de v dans G_{π}
- aucun autre type d'arête

Si on découvre v depuis u durant le PP et que v est noir, alors (v,u) est une arête retour dans π

PP: exemple

PP d'un graphe non orienté et classification des arêtes





Les sommets sont choisis par ordre croissant

PP: algorithme

La méthode publique

```
public void parcourir() {
    t = 1;
    for ( int i = 0; i < G.ordre(); i++ ) {
        c[i] = blanc;
        p[i] = -1;
    }
    for ( int i = 0; i < G.ordre(); i++ ) {
        if ( c[i] == blanc )
            visiter(i);
    }
}</pre>
```

PP: algorithme

Visite en profondeur d'un graphe orienté

```
private void visiter(int i) {
   c[i] = gris; d[i] = t++; Adjacents adj = G.adjacents(i);
   while ( adj.nonVide() ) {
        int s = adj.suivant();
        switch ( c[s] ) {
        case blanc :
             afficher(i,s,"de_liaison");p[s]=i;visiter(s);break;
        case gris :
             afficher(i,s,"retour"); break;
        case noir :
             afficher(i,s,"croisé/couvrant"); }
   c[i] = noir; f[i] = t++;
```

PP: algorithme

Visite en profondeur d'un graphe non orienté

```
private void visiter(int i) {
   c[i] = gris; d[i] = t++; Adjacents adj = G.adjacents(i);
   while ( adj.nonVide() ) {
        int s = adj.suivant();
        if (c[s] == blanc) {
             afficher(i,s,"de_liaison"); p[s] = i; visiter(s);
       else {
             if (c[s] == gris && s != p[i])
                    afficher(i,s,"retour");
   c[i] = noir; f[i] = t++;
```

PP: propriétés

Propriété des parenthèses

Soit G = (S, A) un graphe (orienté ou non) et π un PP particulier de G. Pour tout u et $v \in S$, une et une seule des trois conditions suivantes est vérifiée

- [d[u], f[u]] et [d[v], f[v]] sont disjoints
- $[d[v], f[v]] \subset [d[u], f[u]]$ et v est un descendant de u dans G_{π}
- $[d[u], f[u]] \subset [d[v], f[v]]$ et u est un descendant de v dans G_{π}

PP: propriétés

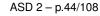
Propriété du chemin blanc

Soit G=(S,A) un graphe (orienté ou non) et π un PP particulier de G.

un sommet v est un descendant d'un sommet u dans G_π

durant le parcours π à la date d[u]

 \exists un chemin allant de u à v constitué de sommets blancs



PP: applications

Très nombreuses, notamment :

- tri topologique (graphe orienté)
- connexité (graphe non orienté)
- 2-connexité (graphe non orienté)
- forte connexité (graphe orienté)
- voir les exercices de la feuille de TD...

PL: présentation

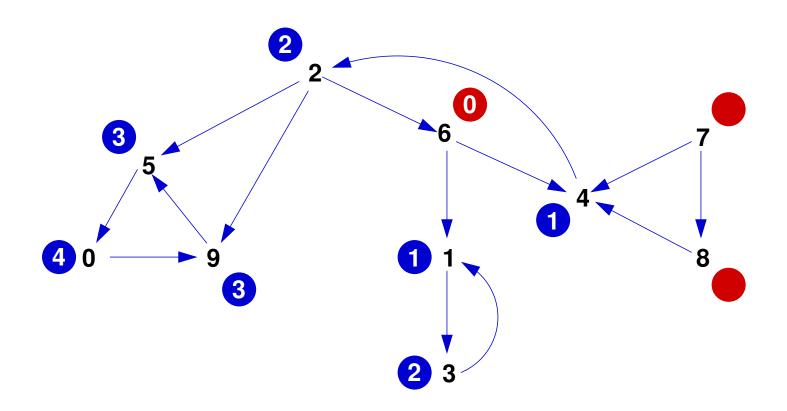
- parcours itératif d'une partie graphe à l'aide d'une file
- ullet explore le graphe à partir d'un sommet particulier s (la source)
- algorithme identique pour les graphes orientés et non orientés
- ullet calcule $\delta(s,u)$ pour tout sommet u, la distance de plus court chemin en nombre d'arcs ou d'arêtes entre la source s et un sommet u quelconque

PL: attributs

Attributs

- la source : le sommet s à partir duquel on explore le graphe
- le **père** : p[u], le sommet à partir duquel le sommet u à été découvert
- la **couleur** : c[u], indique l'état du sommet u durant le parcours. Les sommets sont blancs, gris ou noirs
- la **distance** : D[u], la distance courante en nombre d'arcs ou d'arêtes entre s et u

PL: exemple



$$x = D[u]$$
 et source = 6

PL: algorithme

```
public int[] parcourir(int s) {
    for( int i = 0; i < G.ordre(); i++ ) {
        c[i] = blanc; D[i] = -1; p[i] = -1; 
    FileStatique F = new FileStatique (G. ordre ());
    c[s] = gris; D[s] = 0; ajouter(s,F);
    while ( nonVide(F) ) {
        int u = enlever(F); Adjacents adj = G.adjacents(u);
        while ( adj.nonVide() ) {
            int v = adj.suivant();
            if (c[v] == blanc) {
                c[v]=gris; D[v]=D[u]+1; p[v]=u; ajouter(v,F); }
       c[u] = noir;
    return D;
```

PL: validité

Invariant

- \bullet u est gris $\Longleftrightarrow u \in F$
- u est gris ou noir $\iff D[u] = \delta(s, u)$
- u est gris ou noir et v blanc $\Longrightarrow \delta(s,v) > \delta(s,u)$
- u est blanc et $s \to_G u \Longrightarrow \exists w$ gris, et un chemin constitué de sommets blancs de w à u

Variant

• $(n_b, |F|)$ décroît strictement et est borné par 0, où n_b est le nombre de sommets blancs

PL: synthèse

Complexité

Au pire, chaque sommet passe une et une seule fois dans la file, et tous ses adjacents sont énumérés \Longrightarrow O(|S|+|A|)

Applications

- ullet calcul de $\delta(s,u)$ pour un sommet s donné
- $lue{}$ reconstitution du chemin le plus court avec p[u]
- tester si un graphe non orienté est bi-parti
- calculer le diamètre d'un arbre

Tri topologique : définition

Soit G = (S, A) un graphe orienté *acyclique* et la relation binaire \rightarrow_G sur S définie par :

$$u \rightarrow_G v \iff \exists \text{ un chemin de } u \text{ à } v \text{ dans } G$$

- $\bullet \to_G$ est réflexive : $\forall u \in S, u \to_G u$
- $\bullet \to_G$ est anti-symétrique : $u \neq v$ et $u \to_G v \Longrightarrow v \not\to_G u$
- $\bullet \to_G$ est transitive : $u \to_G v$ et $v \to_G w \Longrightarrow u \to_G w$
- $\bullet \longrightarrow_G$ est partielle : $\exists u, v \in S$, avec $u \not \rightarrow_G v$ et $v \not \rightarrow_G u$

La relation \rightarrow_G est une relation d'ordre partiel sur S

Tri topologique : définition

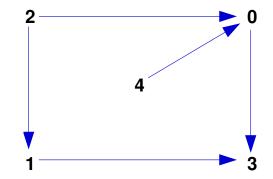
Un tri topologique de G est une suite ordonnée $\langle u_0, u_1, ..., u_{n-1} \rangle$ de tous les sommets de S telle que, pour tout i et $j, 0 \le i < j < n$:

- soit u_i et u_j ne sont pas comparables par \rightarrow_G
- ullet soit $u_i \rightarrow_G u_j$

Si $u_i \rightarrow_G u_j$, on dit que u_j dépend de u_i (emprunté à l'ordonnancement de tâches)

Tri topologique : exemple

Ordonnancement de tâches



On peut effectuer les 5 tâches dans différents ordres :

- 2, 4, 1, 0 et 3
- 4, 2, 1, 0 et 3
- 4, 2, 0, 1 et 3

.....

Principe

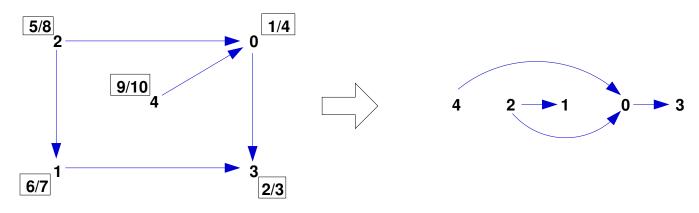
Effectuer un PP de *G* et présenter les sommets dans l'ordre suivant leur date de fin décroissante

Validité

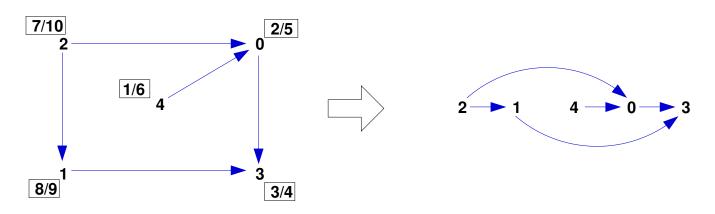
Si le résultat du tri topologique est $\langle u_0, u_1, ..., u_{n-1} \rangle$, alors $\forall i, j, 0 \leq i < j < n, f[u_i] > f[u_j]$ et :

- ullet soit il n'y pas de chemin entre u_i et u_j
- soit $u_i \rightarrow_G u_j$ et $u_j \not\rightarrow_G u_i$ (sinon u_i et $u_j \in \grave{a}$ un cycle)
- $u_j \rightarrow_G u_i$ est impossible car $f[u_i] > f[u_j]$

Sommets dans l'ordre croissant



Sommets dans l'ordre décroissant



Méthode publique, adaptation de "parcourir"

```
public PileStatique trier() {
    PileStatique pile = new PileStatique(G.ordre());
    for ( int i = 0; i < G.ordre(); i++ ) {
        c[i] = blanc;
    }
    for ( int i = 0; i < G.ordre(); i++ ) {
        if ( c[i] == blanc ) {
            visiter(i, pile);
        }
    }
    return pile;
}</pre>
```

Méthode privée, adaptation de "visiter"

```
private void visiter(int i, PileStatique pile) {
    c[i] = gris; Adjacents adj = G.adjacents(i);
    while ( adj.nonVide() ) {
        int s = adj.suivant();
        if ( c[s] == blanc ) {
            visiter(s, pile);
        }
    }
    c[i] = noir;
    pile.empiler(new Integer(i));
}
```

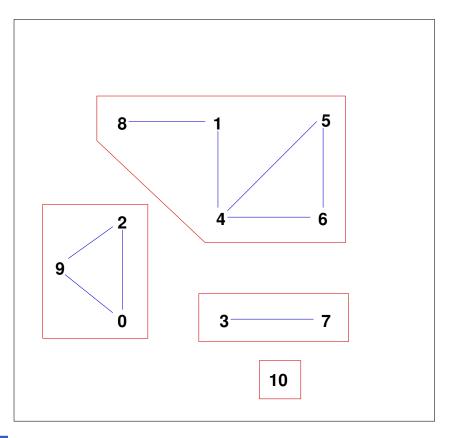
Connexité : problèmes

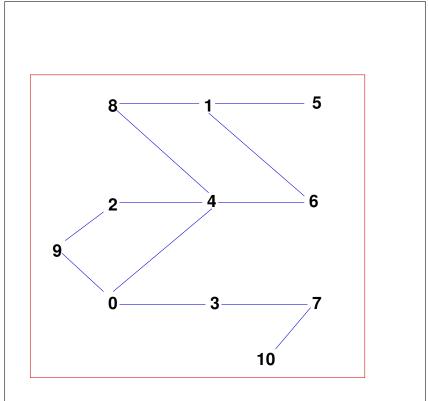
Etant donné un graphe G = (S, A) non orienté

- décider s'il est connexe ou non
- s'il n'est pas connexe, donner le nombre k de ses composantes connexes
- fabriquer ses composantes connexes, c.a.d fabriquer un tableau CC tel que CC[i] est le numéro de la composante connexe à laquelle i appartient $(0 \le CC[i] < k)$

Connexité : problèmes

Composantes connexes d'un graphe non orienté





Connexité : algorithme

Principe

Effectuer un PP de G et identifier chaque arbre de la forêt en profondeur à une composante connexe

Validité

La propriété du chemin blanc assure qu'une fois le premier sommet découvert, tous ceux de sa composante connexe seront atteints. Il suffit alors de recommencer avec un sommet non atteint, et ce jusqu'à ce que tous les sommets aient été visités

2-Connexité: définitions

Soit G = (S, A) un graphe non orienté connexe avec $|S| \ge 3$

Point d'articulation

 $u \in S$ est un point d'articulation \iff le sous-graphe de G engendré par $S \setminus \{u\}$ est non connexe

Pont

 $(u,v) \in A$ est un pont de $G \iff$ le sous-graphe G' de G, $G' = (S, A \setminus \{(u,v)\})$, est non connexe

2-Connexité: propriétés

2-Connexité

G est 2-connexe \iff $G \not\ni$ un point d'articulation

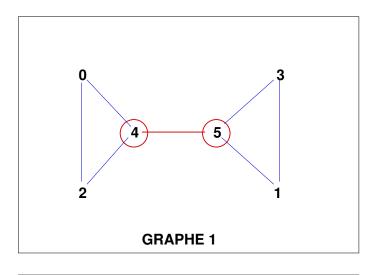
Points d'articulation et ponts

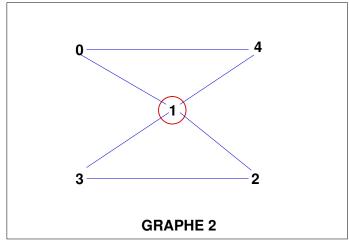
 $G \ni \text{un pont} \Longrightarrow G \ni \text{un point d'articulation}$

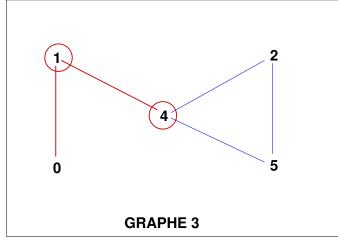
Composante 2-connexe

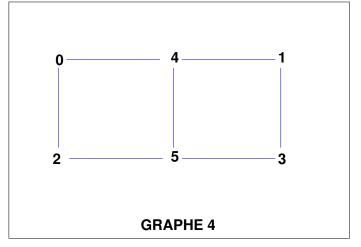
- une composante 2-connexe de G= un sous-graphe engendré maximal 2-connexe
- ullet les composantes 2-connexes de G partitionnent A

2-Connexité : exemple









2-Connexité: algorithme

Base

Effectuer π , un PP de G. Comme G est connexe, G_{π} est un arbre

Définition

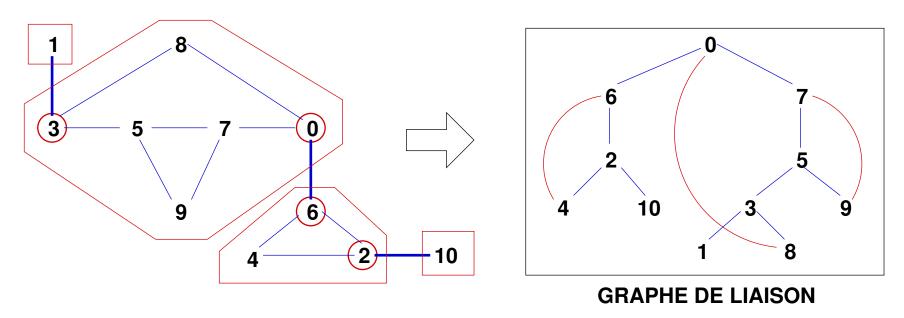
 $\forall u \in S, u \neq \text{de la racine de } G_{\pi}$:

Le sommet u remonte (strictement) $\iff \exists$ une arête retour dans G_{π} partant de u ou d'un de ses descendants dans G_{π} , et arrivant à un ancêtre (propre) de p[u]

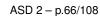
Remarque : $\forall u \in S, u$ est un ancêtre de u

2-Connexité : exemple

2-connexité et PP d'un graphe non orienté



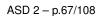
Les sommets sont choisis en ordre croissant



2-Connexité: algorithme

Propriétés

- $r \in S, r$ racine de G_{π} est un point d'articulation $\iff r$ a au moins deux fils dans G_{π}
- $u \in S, u \neq \text{de la racine de } G_{\pi}$, est un point d'articulation $\iff u$ a au moins un fils dans G_{π} qui ne remonte pas strictement
- $(u,v) \in A$ est un pont $\iff p[\alpha] = \beta$ et α ne remonte pas dans G_{π} ($\alpha = u$ et $\beta = v$ ou $\alpha = v$ et $\beta = u$)



2-Connexité: algorithme

Attribut

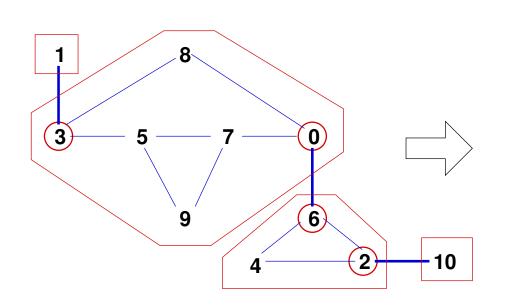
- $\mathcal{D}(u) = \{u\} \cup \{v \in S \mid v \text{ descendant de } u \text{ dans } G_{\pi}\}$
- $\mathcal{R}(u) = \{ w \in S \mid \exists v \in \mathcal{D}(u), (v, w) \text{ arête retour dans } G_{\pi} \}$

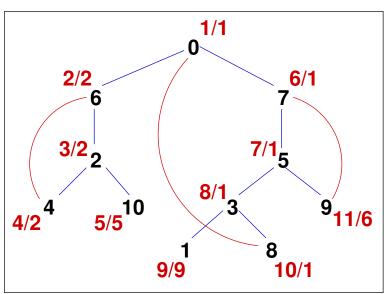
Propriétés

- u remonte dans $G_{\pi} \iff m[u] < d[u]$
- u remonte strictement dans $G_{\pi} \iff m[u] < d[p[u]]$

2-Connexité : exemple

PP d'un graphe non orienté et attribut d[u]/m[u]





GRAPHE DE LIAISON

Les sommets sont choisis en ordre croissant

Forte connexité : problèmes

Etant donné un graphe G = (S, A) orienté

- décider s'il est fortement connexe ou non
- s'il n'est pas fortement connexe, donner le nombre k
 de ses composantes fortement connexes (CFC)
- fabriquer ses CFC, c.a.d fabriquer un tableau CC tel que CC[i] est le numéro de la CFC à laquelle le sommet i appartient $(0 \le CC[i] < k)$
- ullet fabriquer le graphe réduit de G

Forte connexité : définition

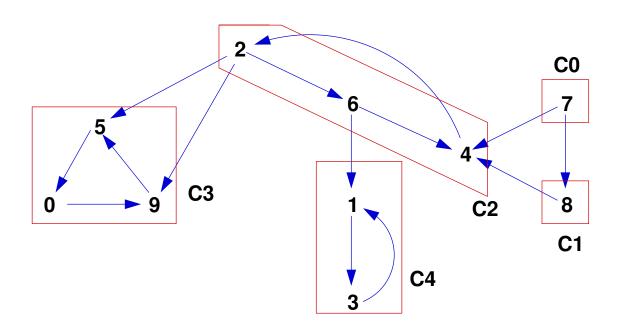
Graphe réduit d'un graphe orienté G = (S, A)

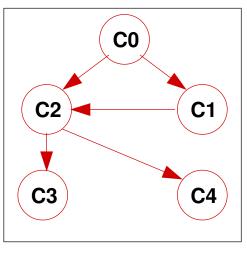
- ullet G_r est le graphe des CFC de G
- $A_G = \{(C, C') \mid C, C' \in S_G, \exists u \in C, u' \in C', (u, u') \in A\}$
- ullet G_r est acyclique

 G_r est une représentation synthétique de G

Forte connexité : exemple

Composantes fortement connexes et graphe réduit





GRAPHE REDUIT

Idée de base

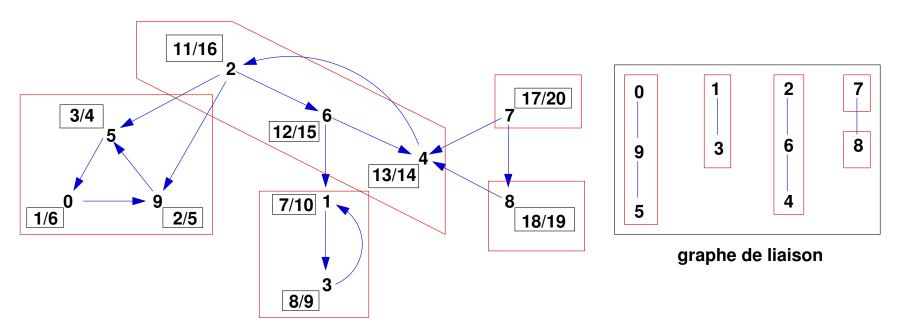
Peut-on s'inspirer du cas non orienté?

Problèmes

- cas non orienté : **tous** les PP de G donnent les même composantes connexes (les arbres de G_{π})
- cas orienté : seulement certains PP de G donnent une forêt en profondeur dont les arbres s'identifient exactement avec les CFC

Forte connexité : exemple

Composantes fortement connexes et PP



Les sommets sont choisis dans l'ordre croissant

Idée de base améliorée

Existe-t-il un prétraitement de G qui donne l'ordre dans lequel il faut **choisir** les sommets pour qu'un PP de G identifie les arbres de la forêt en profondeur avec les CFC ?

Intuition

Le tri topologique classe les sommets d'un graphe (acyclique) en fonction de l'existence de chemin entre ses sommets

Propriété

Soit G = (S, A) et $G_r = (S_G, A_G)$ son graphe réduit. On effectue un PP de G et on considère $f[u], \forall u \in S$. Si $(C, C') \in A_G$ alors $\exists u \in C \mid \forall u' \in C', f[u] > f[u']$

Conséquences

- ullet un tri "topologique" de G donne la liste des sommets dans l'ordre où il ne faut **pas** les choisir !
- inverser la liste précédente est faux car n'importe quel sommet du graphe peut terminer en premier

Solution

Ca marche sur tG !

Définition et propriétés

- Soit G=(S,A) un graphe orienté. Le graphe orienté ${}^tG=(S,{}^tA)$, le transposé de G, est défini par tA : ${}^tA=\{(v,u)\mid v,u\in S,(u,v)\in A\}$
- G et ^tG ont les mêmes CFC
- $(G_r) = (^tG)_r$

Principe

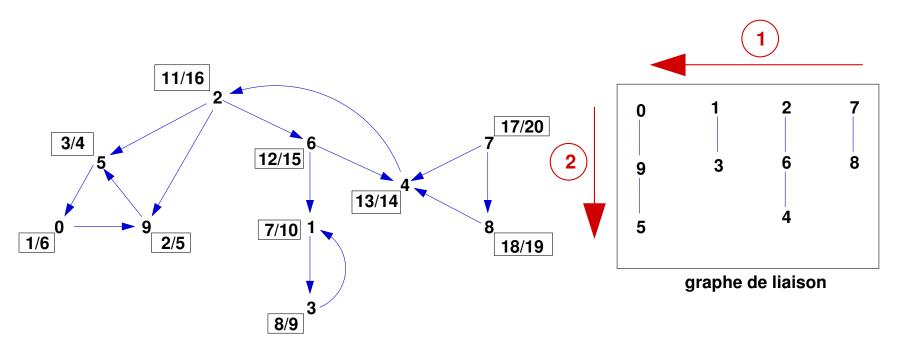
- effectuer un PP de G, collecter les sommets dans P suivant leur date de fin décroissante et fabriquer tG
- effectuer π , un PP de tG en choisissant les sommets dans P: chaque arbre de ${}^tG_{\pi}$ est une CFC de G

Complexité

- deux parcours en profondeur = $\Theta(|S| + |A|)$ en temps
- le graphe annexe ${}^tG = \Theta(|S| + |A|)$ en espace

Forte connexité : exemple

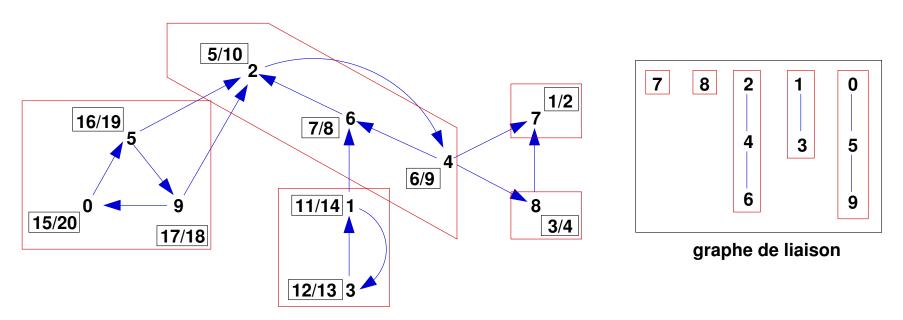
Premier PP et tri "topologique" des sommets



Les sommets sont choisis dans l'ordre croissant

Forte connexité : exemple

Deuxième PP sur le graphe transposé



Les sommets sont choisis dans l'ordre résultant du "tri topologique" précédent, soit 7, 8, 2, 6, 4, 1, 3, 0, 9, 5

Méthode publique

```
public int[] cfc() {
    return cfc(topo());
```

Deuxième parcours

```
private int[] cfc(PileStatique pile) {
    int n = 1; int[] cfc = new int[G.ordre()];
   while ( nonVide(pile) ) {
        int i = depiler(pile);
        if ( c[i] == blanc ) visiter(i,n++,cfc); }
    return cfc;
```

Seconde visite en profondeur et marquage des CFC

```
private void visiter(int i, int n, int[] cfc) {
    c[i] = noir;
    cfc[i] = n;
    Adjacents adj = TG.adjacents(i);

while ( adj.nonVide() ) {
    int s = adj.suivant();
    if ( c[s] == blanc ) {
        visiter(s,n,cfc);
    }
}
```

Premier parcours et fabrication de la pile

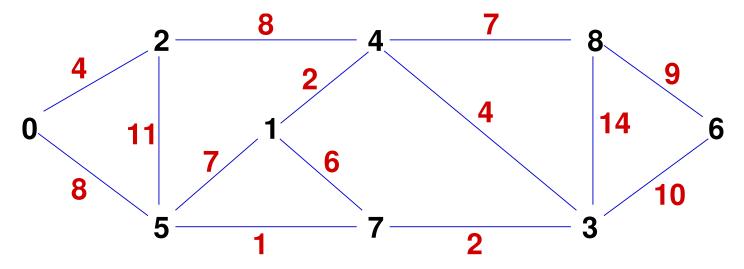
```
private PileStatique topo() {
    PileStatique pile = new PileStatique();
    for ( int i = 0; i < G.ordre(); i++ ) {</pre>
        c[i] = blanc;
    for ( int i = 0; i < G.ordre(); i++ ) {
        if ( c[i] == blanc ) {
            visiter(i,pile);
    return pile;
```

Première visite en profondeur, remplissage de la pile et fabrication du graphe transposé

```
private void visiter(int i, PileStatique pile) {
    c[i] = noir;
    Adjacents adj = G.adjacents(i);
    while ( adj.nonVide() ) {
        int s = adj.suivant();
        TG.connecter(s,i);
        if ( c[s] == blanc ) {
            visiter(s,pile);
        }
    }
    empiler(i,pile);
}
```

Arbres couvrants : présentation

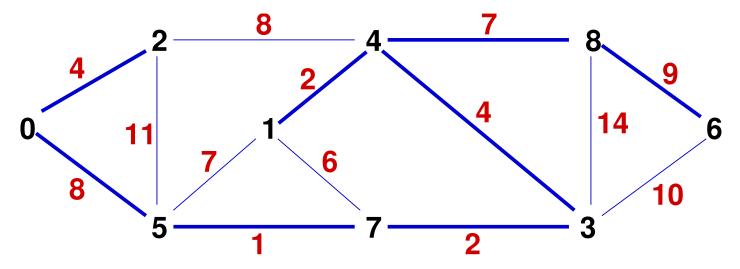
Connecter à moindre coût des éléments à un réseau



Les arêtes du graphe sont les connections possibles avec leur coût (en rouge)

ACM: exemple

Connecter à moindre coût des éléments à un réseau

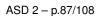


Les arêtes en gras forment les connections qui minimisent le coût total de la connexité du réseau

ACM: définitions

Soit G = (S, A) un graphe non orienté connexe

- $\omega:A\longrightarrow \mathbb{N}^*$ est une *valuation* de G (on dit que G est ω -*valué*)
- $\forall G' = (S', A')$, sous-graphe de G, on définit $\omega(G')$, le poids de G', par $\omega(G') = \sum_{(u,v) \in A'} \omega(u,v)$
- $T=(S,A_T), A_T\subseteq A$, est un arbre couvrant de poids minimum (ACM) de $G\Longleftrightarrow T$ est un arbre couvrant et $\omega(T)=\min\{\omega(T')\mid T' \text{ arbre couvrant de } G\}$



ACM: définitions

- $E \subseteq A$ est un sous-ACM de $G \Longleftrightarrow \exists T = (S, A_T)$ ACM de G tel que $E \subseteq A_T$
- $\forall (u,v) \in A \setminus E, (u,v)$ est une arête *sûre* pour $E \iff E \cup \{(u,v)\}$ est un sous-ACM de G
- $\forall S' \subset S, S' \neq \emptyset$, S' est appelée une *coupure* de G
- $(u,v) \in A$ traverse une coupure S' de $G \Longleftrightarrow u \in S'$ et $v \in S \setminus S'$ ou bien $u \in S \setminus S'$ et $v \in S'$
- une coupure S' de G respecte E, un sous-ACM de G $\iff \forall (u,v) \in E$, (u,v) ne traverse pas S'

ACM: propriétés

Soit G = (S, A) un graphe non orienté connexe ω -valué, et soit E un sous-ACM de G. Les deux propriétés suivantes sont appelées *propriétés des ACM* :

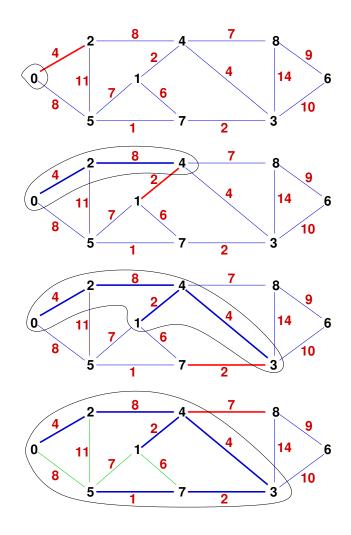
- $\forall S'$ une coupure de G qui respecte E, toute arête (u,v) qui traverse S' et telle que $\omega(u,v) = \min\{\omega(u',v') \mid (u',v') \text{ traverse } S'\}$ est une arête sûre pour E
- $\forall (u,v) \in A \setminus E$ de poids minimum, telle que u et v sont dans des composantes connexes distinctes du graphe G' = (S,E), (u,v) est une arête sûre pour E

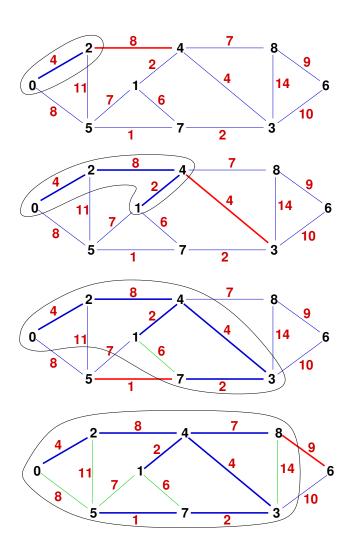
Prim: principe

Déduit de la première propriété des ACM

- \bullet à l'initialisation, $E=\emptyset$ et $S'=\{u\}$ avec u un sommet quelconque de G
- tant que $G_E = (S', E)$ ne couvre pas G faire :
 - $E \longleftarrow E \cup \{(u,v)\}$ où (u,v) est une arête sûre pour E qui traverse S'
- ullet G_E reste connexe tout au long de l'algorithme

Prim: exemple





Prim: implémentation

Représentation des différents éléments

- $G_E = (S', E)$: un graphe non orienté initialement sans arête, auquel on ajoute les arêtes sûres successives
- \bullet S' : un tableau de booléen pour marquer les sommets de S'
- ullet : simplement les arêtes de G_E
- l'ensemble des arêtes traversant S': un tas croissant, la clef d'une arête étant son poids. Le minimum du tas est l'arête sûre qui traverse S'

Prim: algorithme

Méthode publique : initialisations

```
public GrapheNonOriente acm() {
    TasCroissant T = new TasCroissant(G. aretes());
    GrapheNonOriente Ge = new GrapheNonOriente(G. ordre());
    boolean[] dansSprime = new boolean[G.ordre()];
    dansSprime[0] = true; int m = 1;
    Adjacents adj = G. adjacents (0);
    while ( adj.nonVide() ) {
        int s = adj.suivant();
        ajouter (0, s, G. poids (0, s), T);
```

Prim: algorithme

Méthode publique : fabrication de E

```
public GrapheNonOriente acm() {
    while ( m < G.ordre() ) {</pre>
        Arete uv = retirerMinimum(T);
        int u = uv.origine; int v = uv.extremite;
        if ( ! dansSprime[v] ) {
            Ge.connecter(u,v); dansSprime[v] = true; m++;
            adj = G.adjacents(v);
            while ( adj.nonVide() ) {
                int s = adj.suivant();
                if (! dansSprime[s]) ajouter(v,s,G.poids(v,s),T);}
    return Ge;
```

Prim: validité

Invariant

- E est un ACM du sous-graphe engendré par S' l'ensemble des sommets marqués avec |S'|=m
- $(u,v) \in A, u \in S' \text{ et } v \notin S' \Longrightarrow (u,v) \in T$

Variant

• (m, -|T|) croît et est borné par (G. ordre, 0)

Complexité

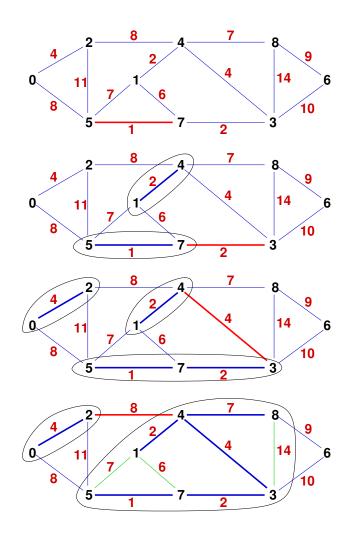
 $\Theta(|A|\lg|A|)$

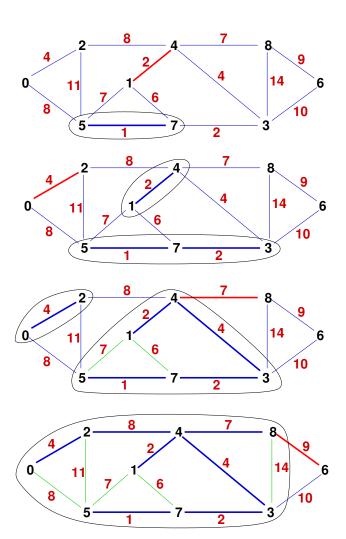
Kruskal: principe

Déduit de la deuxième propriété des ACM

- à l'initialisation, $E = \emptyset$
- tant que G' = (S, E) n'est pas connexe faire :
 - $E \longleftarrow E \cup \{(u,v)\}$ où $(u,v) \in A \setminus E$ est une arête sûre pour E parmi toutes les arêtes reliant deux composantes connexes de G'
- G' n'est pas connexe durant l'algorithme
- ullet problème : gérer les composantes connexes de G' !

Kruskal: exemple





Kruskal: implémentation

Représentation des différents éléments

- $A \setminus E$: on y choisit à chaque itération l'arête de poids minimum $\Longrightarrow T$, un tas croissant!
- ullet CC, les composantes connexes de G'=(S,E) : il faut gérer des ensembles de sommets et pouvoir
 - $lue{}$ tester si u et v sont dans la même composante
 - lacktriangle fusionner les composantes de u et v en une seule
- ullet : simplement les arêtes du graphe G' (noté Gp) en construction

Kruskal: algorithme

Méthode publique

```
public GrapheNonOriente acm() {
GrapheNonOriente Gp = new GrapheNonOriente(G. ordre());
TasCroissant T = new TasCroissant(G. aretes()); initialiser(T);
Composante CC = new Composante(G. ordre()); int k = G. ordre();
while (k > 1)
   Arete uv = (Arete) T.extraireMinimum().info();
    int u = uv.origine(); int v = uv.extremite();
    if (CC.separes(u,v)) {
      Gp.connecter(u, v); CC.reunir(u, v); k--;
return Gp;
```

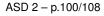
Kruskal: validité

Invariant

- G' = (S, E) est acyclique de poids minimum, parmi tous les graphes G'' = (S, X) de G avec |X| = |E|
- ullet k est le nombre de composantes connexes de G'
- $k > 1 \iff \exists C_1, C_2 \text{ deux composantes de } G'$, telles que $\exists u_1 \in C_1, u_2 \in C_2 \text{ avec } (u_1, u_2) \in T$

Variant

• (k, |T|) décroît et est minoré par (1, 0)

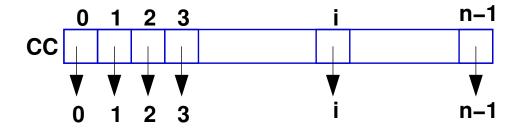


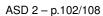
Gestion des composantes connexes de G'

- une composante = un ensemble d'entiers $i, 0 \le i < n$ où n est l'ordre du graphe
- \bullet $\forall i, j$ sommets de G, separes(i, j) doit tester si i et j sont dans deux ensembles différents
- $\forall i, j \text{ sommets de } G \text{ tels que } \operatorname{separes}(i, j) \text{ est vrai,}$ $\operatorname{reunir}(i, j) \text{ doit fusionner les deux composantes}$ $\operatorname{auxquelles} \ni i \text{ et } j \text{ en une seule composante}$

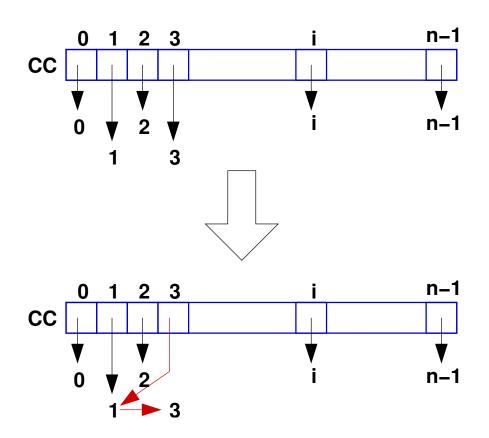
On gère CC, un tableau contenant des pointeurs sur des entiers (les sommets). L'opération $\operatorname{separes}(i,j)$ est équivalente à CC[i] = CC[j], et $\operatorname{reunir}(i,j)$ consiste à fusionner des listes CC[i] et CC[j], en fusionnant la plus petite dans la plus grande

A l'initialisation

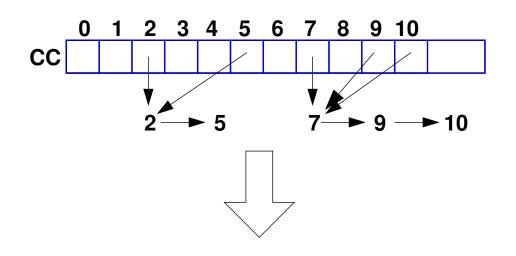


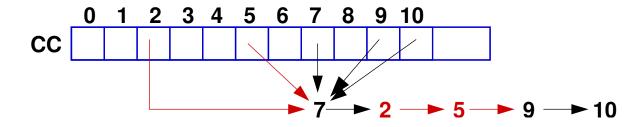


Réunir les composantes de 1 et 3



Réunir les composantes de 2 et 7





Complexité de la gestion des composantes

- complexité de reunir $(i, j) = \min(|CC[i]|, |CC[j]|)$
- dans le pire des cas on a 2^k sommets et on les réunit 2 par 2, 4 par 4, etc..., et la complexité est

$$n/2 + n/4 + \dots + n/(2^i) = \frac{n}{2} \times \lg(n) = O(n \lg n)$$

La complexité de la réunion de tous les sommets de G est en $O(|S|\lg|S|)$

Kruskal: complexité

Fabrication des composantes connexes de G'

ullet réunion de |S| singleton en un unique ensemble de taille |S|: $\Theta(|S| \lg |S|)$

Gestion du tas T

• on extrait les |A| éléments du tas : $\Theta(|A| \lg |A|)$

Algorithme de Kruskal

• $\Theta(|S| \lg |S|) + \Theta(|A| \lg |A|) + \Theta(|A|) = \Theta(|A| \lg |A|)$ car $|A| \ge |S| - 1$ (graphe connexe)

ACM: synthèse

Deux algorithmes basés sur les mêmes propriétés

- algorithmes de Prim et Kruskal
- ullet complexité en $\Theta(|A| \lg |A|)$ en utilisant un tas

Algorithmes dérivés

- recherche du deuxième ACM
- mise à jour de l'ACM après ajout ou supression d'une arête

